Titre : |
Intégrales généralisées, intégrales dépendant d'un paramètre : L1, L2, L3, classes préparatoires, CAPES |
Type de document : |
texte imprimé |
Auteurs : |
Mohamed Boucetta, Auteur |
Editeur : |
Toulouse : Cépaduès-éd. |
Année de publication : |
impr. 2013 |
Collection : |
Bien débuter en Mathématiques |
Importance : |
1 vol. (III-148 p.) |
Présentation : |
couv. ill. |
Format : |
21 cm |
ISBN/ISSN/EAN : |
978-2-36493-081-0 |
Note générale : |
La couv. porte en plus : "exercices corrigés avec rappels de cours" Index |
Langues : |
Français (fre) Langues originales : Français (fre) |
Mots-clés : |
Intégrales Problèmes et exercices Intégrales généralisées Problèmes et exercices |
Résumé : |
Cet ouvrage est consacré à l'étude des intégrales définies sur un intervalle quelconque et à celle des intégrales dépendant d'un paramètre. Il s'adresse donc aux étudiants des licences scientifiques, des classes préparatoires aux Grandes Ecoles, et à ceux qui préparent le C.A.P.E.S. de mathématiques. Comme dans chaque fascicule de cette collection, nous présentons des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme et de façon autonome. Les exercices proposés sont typiques des questions posées aux examens et aux concours. Une fois ces notions assimilées, le lecteur pourra sans difficulté s'engager dans des études plus avancées. Mohamed Boucetta est Professeur de Mathématiques à l'Université de Marrakech, Faculté des Sciences et Techniques, Gueliz. Jean-Marie Morvan est Professeur de Mathématiques à l Université Claude Bernard Lyon 1. Table des matières 1 Intégration sur un intervalle 1.1 Intégration des fonctions positives ou nulles 1.1.1 Définition et premières propriétés 1.1.2 Comparaison des fonctions intégrables 1.1.3 Convergence d intégrales et séries numériques 1.2 Intégration des fonctions réelles ou complexes 1.2.1 Définition et premières propriétés 1.2.2 Intégration par parties et changement de variable 1.3 Exercices 2 Convergence dominée 2.1 Convergence en moyenne, en moyenne quadratique 2.2 Théorème de convergence dominée 2.3 Intégrales dépendant d un paramètre 2.3.1 Continuité sous le signe intégrale 2.3.2 Dérivation sous le signe intégrale 2.4 Exercices La collection Bien Débuter en Mathématiques se compose d une série de fascicules d exercices et de problèmes adaptés aux programmes de mathématiques des premières années de l enseignement supérieur. |
Intégrales généralisées, intégrales dépendant d'un paramètre : L1, L2, L3, classes préparatoires, CAPES [texte imprimé] / Mohamed Boucetta, Auteur . - Toulouse : Cépaduès-éd., impr. 2013 . - 1 vol. (III-148 p.) : couv. ill. ; 21 cm. - ( Bien débuter en Mathématiques) . ISBN : 978-2-36493-081-0 La couv. porte en plus : "exercices corrigés avec rappels de cours" Index Langues : Français ( fre) Langues originales : Français ( fre)
Mots-clés : |
Intégrales Problèmes et exercices Intégrales généralisées Problèmes et exercices |
Résumé : |
Cet ouvrage est consacré à l'étude des intégrales définies sur un intervalle quelconque et à celle des intégrales dépendant d'un paramètre. Il s'adresse donc aux étudiants des licences scientifiques, des classes préparatoires aux Grandes Ecoles, et à ceux qui préparent le C.A.P.E.S. de mathématiques. Comme dans chaque fascicule de cette collection, nous présentons des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme et de façon autonome. Les exercices proposés sont typiques des questions posées aux examens et aux concours. Une fois ces notions assimilées, le lecteur pourra sans difficulté s'engager dans des études plus avancées. Mohamed Boucetta est Professeur de Mathématiques à l'Université de Marrakech, Faculté des Sciences et Techniques, Gueliz. Jean-Marie Morvan est Professeur de Mathématiques à l Université Claude Bernard Lyon 1. Table des matières 1 Intégration sur un intervalle 1.1 Intégration des fonctions positives ou nulles 1.1.1 Définition et premières propriétés 1.1.2 Comparaison des fonctions intégrables 1.1.3 Convergence d intégrales et séries numériques 1.2 Intégration des fonctions réelles ou complexes 1.2.1 Définition et premières propriétés 1.2.2 Intégration par parties et changement de variable 1.3 Exercices 2 Convergence dominée 2.1 Convergence en moyenne, en moyenne quadratique 2.2 Théorème de convergence dominée 2.3 Intégrales dépendant d un paramètre 2.3.1 Continuité sous le signe intégrale 2.3.2 Dérivation sous le signe intégrale 2.4 Exercices La collection Bien Débuter en Mathématiques se compose d une série de fascicules d exercices et de problèmes adaptés aux programmes de mathématiques des premières années de l enseignement supérieur. |
| |